Monday, April 19, 2010

Pentose Sugars




There are two types of pentose sugars found in nucleic acids. This difference is reflected in their names--deoxyribonucleic acid indicates the presence of deoxyribose; while ribonucleic acid indicates the presence of ribose.


In the graphic on the left, the structures of both ribose and deoxyribose are shown. Note the red -OH on one and the red -H on the other are the only differences. The alpha and beta designations are interchangeable and are not a significant difference between the two.


Phosphate




A major requirement of all living things is a suitable source of phosphorus. One of the major uses for phosphorus is as the phosphate ion which is incorporated into DNA and RNA

Heterocyclic Amines




Heterocyclic amines are sometimes called nitrogen bases or simply bases. The heterocyclic amines are derived from two root structures: purines or pyrimidines. The purine root has both a six and a five member ring; the pyrimidine has a single six member ring.There are two major purines, adenine (A) and guanine (G), and three major pyrimidines, cytosine (C), uracil (U), and thymine (T). The structures are shown in the graphic on the left. As you can see, these structures are called "bases" because the amine groups as part of the ring or as a side chain have a basic property in water.


A major difference between DNA and RNA is that DNA contains thymine, but not uracil, while RNA contains uracil but not thymine. The other three heterocyclic amines, adenine, guanine, and cytosine are found in both DNA and RNA. For convenience, you may remember, the list of heterocyclic amines in DNA by the words: The Amazing Gene Code (TAGC).


Sunday, April 18, 2010

Applications of Microarrays




Gene discovery: DNA Microarray technology helps in the identification of new genes, know about their functioning and expression levels under different conditions. Disease diagnosis: DNA Microarray technology helps researchers learn more about different diseases such as heart diseases, mental illness, infectious disease and especially the study of cancer. Until recently, different types of cancer have been classified on the basis of the organs in which the tumors develop. Now, with the evolution of microarray technology, it will be possible for the researchers to further classify the types of cancer on the basis of the patterns of gene activity in the tumor cells. This will tremendously help the pharmaceutical community to develop more effective drugs as the treatment strategies will be targeted directly to the specific type of cancer.


Drug discovery: Microarray technology has extensive application in Pharmacogenomics. Pharmacogenomics is the study of correlations between therapeutic responses to drugs and the genetic profiles of the patients. Comparative analysis of the genes from a diseased and a normal cell will help the identification of the biochemical constitution of the proteins synthesized by the diseased genes. The researchers can use this information to synthesize drugs which combat with these proteins and reduce their effect. Toxicological research: Microarray technology provides a robust platform for the research of the impact of toxins on the cells and their passing on to the progeny. Toxicogenomics establishes correlation between responses to toxicants and the changes in the genetic profiles of the cells exposed to such toxicants.


Microarray




Molecular Biology research evolves through the development of the technologies used for carrying them out. It is not possible to research on a large number of genes using traditional methods. DNA Microarray is one such technology which enables the researchers to investigate and address issues which were once thought to be non traceable. One can analyze the expression of many genes in a single reaction quickly and in an efficient manner. DNA Microarray technology has empowered the scientific community to understand the fundamental aspects underlining the growth and development of life as well as to explore the genetic causes of anomalies occurring in the functioning of the human body.


A typical microarray experiment involves the hybridization of an mRNA molecule to the the DNA template from which it is originated. Many DNA samples are used to construct an array. The amount of mRNA bound to each site on the array indicates the expression level of the various genes. This number may run in thousands. All the data is collected and a profile is generated for gene expression in the cell.